Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling

نویسندگان

  • T. S. Bates
  • T. L. Anderson
چکیده

The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar) radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001). Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions Correspondence to: T. S. Bates ([email protected]) downwind of major urban/population centers (North Indian Ocean (NIO) during INDOEX, the Northwest Pacific Ocean (NWP) during ACE-Asia, and the Northwest Atlantic Ocean (NWA) during ICARTT), incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART). Measurements of burdens, extinction optical depth (AOD), and direct radiative effect of aerosols (DRE – change in radiative flux due to total aerosols) are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity) are used as input parameters to two radiative transfer models (GFDL and University Published by Copernicus GmbH on behalf of the European Geosciences Union. 1658 T. S. Bates et al.: Constraining aerosol climate models with observations of Michigan) to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Constraining the radiative transfer calculations by observational inputs increases the clear-sky, 24-h averaged AOD (34±8%), top of atmosphere (TOA) DRE (32±12%), and TOA direct climate forcing of aerosols (DCF – change in radiative flux due to anthropogenic aerosols) (37±7%) relative to values obtained with “a priori” parameterizations of aerosol loadings and properties (GFDL RTM). The resulting constrained clear-sky TOA DCF is −3.3±0.47, −14±2.6, −6.4±2.1 Wm−2 for the NIO, NWP, and NWA, respectively. With the use of constrained quantities (extensive and intensive parameters) the calculated uncertainty in DCF was 25% less than the “structural uncertainties” used in the IPCC-2001 global estimates of direct aerosol climate forcing. Such comparisons with observations and resultant reductions in uncertainties are essential for improving and developing confidence in climate model calculations incorporating aerosol forcing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations

We combine in situ measurements of sea salt aerosols (SS) from open ocean cruises and ground-based stations together with aerosol optical depth (AOD) observations from MODIS and AERONET, and the GEOS-Chem global chemical transport model to provide new constraints on SS emissions over the world’s oceans. We find that the GEOSChem model using the Gong (2003) source function overestimates cruise o...

متن کامل

Global budget and radiative forcing of black carbon aerosol: Constraints from poletopole (HIPPO) observations across the Pacific

[1] We use a global chemical transport model (GEOS-Chem) to interpret aircraft curtain observations of black carbon (BC) aerosol over the Pacific from 85°N to 67°S during the 2009–2011 HIAPER (High-Performance Instrumented Airborne Platform for Environmental Research) Pole-to-Pole Observations (HIPPO) campaigns. Observed concentrations are very low, implying much more efficient scavenging than ...

متن کامل

Influence of anthropogenic aerosol on cloud optical depth and albedo shown by satellite measurements and chemical transport modeling.

The Twomey effect of enhanced cloud droplet concentration, optical depth, and albedo caused by anthropogenic aerosols is thought to contribute substantially to radiative forcing of climate change over the industrial period. However, present model-based estimates of this indirect forcing are highly uncertain. Satellite-based measurements would provide global or near-global coverage of this effec...

متن کامل

Analysis of aircraft and satellite measurements from the Intercontinental Chemical Transport Experiment (INTEX-B) to quantify long-range transport of East Asian sulfur to Canada

We interpret a suite of satellite, aircraft, and ground-based measurements over the North Pacific Ocean and western North America during April–May 2006 as part of the Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign to understand the implications of long-range transport of East Asian emissions to North America. The Canadian component of INTEX-B included 33 vertical prof...

متن کامل

An observational and modeling strategy to investigate the impact of remote sources on local air quality: A Houston, Texas, case study from the Second Texas Air Quality Study (TexAQS II)

[1] Quantifying the impacts of remote sources on individual air quality exceedances remains a significant challenge for air quality forecasting. One goal of the 2006 Second Texas Air Quality Study (TexAQS II) was to assess the impact of distant sources on air quality in east Texas. From 23 to 30 August 2006, retrievals of tropospheric carbon monoxide (CO) from NASA’s Atmospheric InfraRed Sounde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006